Quantitative levels of diesel exhaust exposure in the contemporary Australian mining industry

Susan Peters
Occupational Respiratory Epidemiology
School of Population Health
University of Western Australia
susan.peters@uwa.edu.au
Background & Objective

- Working in the mining industry is characterised by high levels of exposure to diesel exhaust (a human carcinogen) due to the wide use of heavy machinery.
- Current guideline in Australia is an exposure limit of 100 µg/m3 elemental carbon (EC).

Objective:
To estimated quantitative levels of exposure to diesel exhaust expressed by EC in the contemporary mining industry.
Methods

- CONTAM monitoring database
 - 8,558 personal EC measurements (2003-2015; median 2011)
 - 119 mine sites in Western Australia
 - 52% Gold
 - 22% Nickel
 - 10% Base metals
 - 8% Iron ore
 - 8% Other
 - 5,336 individuals representing 145 occupations
Methods

- Statistical analyses
 - Multiple imputation for measurements below limit of detection (25%)
 - Summary statistics: arithmetic mean (AM) and geometric mean (GM)
 - Mixed-effects models to estimate GMs in 2011
 - Fixed effects
 - Year of measurement (interaction with exposure group)
 - Exposure group
 - Mineral type
 - Sampling duration
 - Random effects
 - Job title
 - Minesite ID
 - Worker ID
Surface jobs:

- AM: 21 µg/m³
- GM: 9 µg/m³

UG jobs:

- UG1: 77 µg/m³
- UG2: 41 µg/m³

UG1: General miner

UG2: Drilling/blasting

UG3: Transport/loading

UG4: Ground/roof support and other service occupations

UG5: Winding/hoisting/crushing operators, managers/foremen, other professionals
Results

Estimations EC exposure levels for 2011 (12-hr shift)

<table>
<thead>
<tr>
<th>Underground exposure groups</th>
<th>EC exposure level (GM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General miner</td>
<td>43 µg/m³</td>
</tr>
<tr>
<td>Drilling/blasting</td>
<td>34 µg/m³</td>
</tr>
<tr>
<td>Transport/loading</td>
<td>35 µg/m³</td>
</tr>
<tr>
<td>Ground/roof support and other service occupations</td>
<td>35 µg/m³</td>
</tr>
<tr>
<td>Winding/hoisting/crushing operators, managers/foremen, other professionals</td>
<td>17 µg/m³</td>
</tr>
</tbody>
</table>
Estimations EC exposure levels for 2011 (12-hr shift)

Top 5 highest exposed underground occupations

<table>
<thead>
<tr>
<th>Job title</th>
<th>EC exposure level (GM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel loader operator</td>
<td>59 µg/m³</td>
</tr>
<tr>
<td>Ground or roof support occupations</td>
<td>54 µg/m³</td>
</tr>
<tr>
<td>Non-contract miner</td>
<td>53 µg/m³</td>
</tr>
<tr>
<td>Contract miner</td>
<td>51 µg/m³</td>
</tr>
<tr>
<td>Loading or transport occupation</td>
<td>51 µg/m³</td>
</tr>
</tbody>
</table>
Discussion

Current GM exposures are below the recommendation of 100 µg/m³ EC.

However:

a recent study by Vermeulen et al. (EHP, 2014) shows the following excess lifetime risks of dying from lung cancer in the US:

- 689/10,000 when 45 year occupationally exposed to 25 µg/m³
- 200/10,000 when 45 year occupationally exposed to 10 µg/m³
- 17/10,000 when 45 year occupationally exposed to 1 µg/m³
Discussion

Current GM exposures are below the recommendation of 100 µg/m3 EC.

However:

a recent study by Vermeulen et al. (EHP, 2014) shows the following excess lifetime risks of dying from lung cancer in the US:

- $689/10,000$ when 45 year occupationally exposed to 25 µg/m3
- $200/10,000$ when 45 year occupationally exposed to 10 µg/m3
- $17/10,000$ when 45 year occupationally exposed to 1 µg/m3

$923/10,000$ when 45 year occupationally exposed to 59 µg/m3 in Western Australian males
Discussion

- Recent measurements representing present-day exposures

- Limitations of measurement data
 - Measurements generally more often taken in situations where exposures are expected
 - Surface jobs may be overestimated - underground jobs probably ok
 - Monitoring data may be provided predominantly by ‘best practice’ mining companies, leading to underestimation of the exposure levels
Conclusion

Levels of exposure to diesel exhaust in the contemporary Australian mining industry are substantial, particularly for underground workers.

Even though GM exposure levels are well below the recommendation of 100 µg/m³ EC, the estimated excess number of lung cancer deaths associated with these levels support the need for more stringent OELs for diesel exhaust.
Many thanks for your attention!

Co-authors:
Nick de Klerk, Alison Reid, Lin Fritschi, Bill Musk, Roel Vermeulen

Susan Peters
Occupational Respiratory Epidemiology
School of Population Health
University of Western Australia
susan.peters@uwa.edu.au